Identification

Title

Modeling and observations of North Atlantic cyclones: Implications for U.S. Offshore wind energy

Abstract

To meet the Biden-Harris administration's goal of deploying 30 GW of offshore wind power by 2030 and 110 GW by 2050, expansion of wind energy into U.S. territorial waters prone to tropical cyclones (TCs) and extratropical cyclones (ETCs) is essential. This requires a deeper understanding of cyclone-related risks and the development of robust, resilient offshore wind energy systems. This paper provides a comprehensive review of state-of-the-science measurement and modeling capabilities for studying TCs and ETCs, and their impacts across various spatial and temporal scales. We explore measurement capabilities for environments influenced by TCs and ETCs, including near-surface and vertical profiles of critical variables that characterize these cyclones. The capabilities and limitations of Earth system and mesoscale models are assessed for their effectiveness in capturing atmosphere–ocean–wave interactions that influence TC/ETC-induced risks under a changing climate. Additionally, we discuss microscale modeling capabilities designed to bridge scale gaps from the weather scale (a few kilometers) to the turbine scale (dozens to a few meters). We also review machine learning (ML)-based, data-driven models for simulating TC/ETC events at both weather and wind turbine scales. Special attention is given to extreme metocean conditions like extreme wind gusts, rapid wind direction changes, and high waves, which pose threats to offshore wind energy infrastructure. Finally, the paper outlines the research challenges and future directions needed to enhance the resilience and design of next-generation offshore wind turbines against extreme weather conditions.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.net/ark:/85065/d7pk0mhc

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2024-09-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2025 AIP Publishing LLC<br>&nbsp;

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-10T19:58:46.259797

Metadata language

eng; USA