Exploring the composited T-28 hailstorm penetration dataset to characterize hail properties within the updraft and downdraft regions
Measurements from the South Dakota School of Mines and Technology T-28 hail-penetrating aircraft are analyzed using recently developed data processing techniques with the goals of identifying where the large hail is found relative to vertical motion and improving the detection of hail microphysical properties from radar. Hail particle size distributions (PSD) and environmental conditions (temperature, relative humidity, liquid water content, air vertical velocity) were digitally collected by the T28 between 1995 and 2003 and synthesized by Detwiler et al. The PSD were forward modeled by Cecchini et al. to simulate the radar reflectivity of the PSD at multiple radar wavelengths. The T-28 penetrated temperatures primarily between 0 degrees and -10 degrees C. The largest hailstones were sampled near the updraft/downdraft interface. Liquid water contents were highest in the updraft cores, whereas total (liquid + frozen) water contents were highest near the updraft/downdraft interface. The fitted properties of the PSD (intercept and slope) are directly related to each other but do not show any dependence on the region of the hailstorm where sampled. The PSD measurements and the radar reflectivity calculations at multiple radar wavelengths facilitated the development of relationships between the PSD bulk properties -hail kinetic energy and kinetic energy flux-and the radar reflectivity. Rather than using the oft-assumed sphericity and solid ice physical properties, actual measurements of hail properties are used in the analysis. Results from the maximum estimated size of hail (MESH) and vertical integrated liquid water (VIL) algorithms are evaluated based on this analysis.
document
https://n2t.org/ark:/85065/d7mg7tkr
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2023-12-01T00:00:00Z
Copyright 2023 American Meteorological Society (AMS).
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2025-07-11T15:12:06.043238