Identification

Title

Exploring the composited T-28 hailstorm penetration dataset to characterize hail properties within the updraft and downdraft regions

Abstract

Measurements from the South Dakota School of Mines and Technology T-28 hail-penetrating aircraft are analyzed using recently developed data processing techniques with the goals of identifying where the large hail is found relative to vertical motion and improving the detection of hail microphysical properties from radar. Hail particle size distributions (PSD) and environmental conditions (temperature, relative humidity, liquid water content, air vertical velocity) were digitally collected by the T28 between 1995 and 2003 and synthesized by Detwiler et al. The PSD were forward modeled by Cecchini et al. to simulate the radar reflectivity of the PSD at multiple radar wavelengths. The T-28 penetrated temperatures primarily between 0 degrees and -10 degrees C. The largest hailstones were sampled near the updraft/downdraft interface. Liquid water contents were highest in the updraft cores, whereas total (liquid + frozen) water contents were highest near the updraft/downdraft interface. The fitted properties of the PSD (intercept and slope) are directly related to each other but do not show any dependence on the region of the hailstorm where sampled. The PSD measurements and the radar reflectivity calculations at multiple radar wavelengths facilitated the development of relationships between the PSD bulk properties -hail kinetic energy and kinetic energy flux-and the radar reflectivity. Rather than using the oft-assumed sphericity and solid ice physical properties, actual measurements of hail properties are used in the analysis. Results from the maximum estimated size of hail (MESH) and vertical integrated liquid water (VIL) algorithms are evaluated based on this analysis.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7mg7tkr

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2023-12-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2023 American Meteorological Society (AMS).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T15:12:06.043238

Metadata language

eng; USA