Identification

Title

A numerical study on the extreme intensification of Hurricane Patricia (2015)

Abstract

In October 2015 Hurricane Patricia stormed through the eastern Pacific, taking its place as the strongest hurricane in recorded history when its intensity reached a record breaking 185 kt (1 kt = 0.51 m s(-1)). Operational models and the National Hurricane Center's official forecast failed to predict Patricia's unprecedented intensification, provoking questions as to whether such an extreme event can actually be forecast. This study reports on the successful simulation of Patricia using a state-of-the-art high-resolution numerical weather prediction model. It was found that high model resolution (x 1 km), vortex initialization, and the parameterization of dissipative heating were key factors in realistically simulating Patricia's intensity evolution. The simulation was used to investigate Patricia's environment in terms of sea surface temperature, vertical wind shear, and humidity, under the premise that a simulation able to capture Patricia's peak intensity would also accurately represent Patricia's environment. Compared with a climatology derived from the Statistical Hurricane Intensity Prediction Scheme dataset, sea surface temperature ranked in the 99th percentile and environmental vertical wind shear in the 83rd percentile (ordered from high to low). However, humidity ranked more moderately. Ensemble forecasts indicate that Patricia had relatively high predictability in comparison to other well-studied rapid intensification cases such as 2010's Hurricane Earl. The results from this study imply that high-resolution models are in principle able to predict the intensity of extreme hurricanes like Patricia.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7xw4nmx

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2018-08-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2018 American Meteorological Society.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:22:08.146506

Metadata language

eng; USA