Identification

Title

Importance of internal variability for climate model assessment

Abstract

Benchmarking climate model simulations against observations of the climate is core to the process of building realistic climate models and developing accurate future projections. However, in many cases, models do not match historical observations, particularly on regional scales. If there is a mismatch between modeled and observed climate features, should we necessarily conclude that our models are deficient? Using several illustrative examples, we emphasize that internal variability can easily lead to marked differences between the basic features of the model and observed climate, even when decades of model and observed data are available. This can appear as an apparent failure of models to capture regional trends or changes in global teleconnections, or simulation of extreme events. Despite a large body of literature on the impact of internal variability on climate, this acknowledgment has not yet penetrated many model evaluation activities, particularly for regional climate. We emphasize that using a single or small ensemble of simulations to conclude that a climate model is in error can lead to premature conclusions on model fidelity. A large ensemble of multidecadal simulations is therefore needed to properly sample internal climate variability in order to robustly identify model deficiencies and convincingly demonstrate progress between generations of climate models.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d79c72f1

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2023-06-17T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T15:16:59.792430

Metadata language

eng; USA