Identification

Title

A comparison of machine learning-based approaches in estimating surface PM2.5 concentrations focusing on Artificial Neural Networks and high pollution events

Abstract

Surface PM2.5 concentrations have significant implications for human health, necessitating accurate estimations. This study compares various machine learning models, including linear models, tree-based algorithms, and artificial neural networks (ANNs) for estimating PM2.5 concentrations using the MERRA-2 dataset from 2012 to 2023. Mutual information and Spearman cross-feature correlation scores are used during feature selections. The performance of models is evaluated using metrics including normalized Nash–Sutcliffe efficiency (NNSE), root mean standard deviation ratio (RSR), and mean percentage error (MPE). Our results show that ANNs outperform linear and tree models, particularly in estimating daily PM2.5 concentrations of 35–1000 µg/m3. ANNs improve NNSE by 119% and 46%, RSR by 40% and 24%, and MPE by 44% and 30% from linear and tree models, respectively, indicating ANN’s superior estimation performance during high pollution days. The sensitivity analysis of features that interpret the models suggests that the total extinction AOD at 550 nm and surface CO concentrations are the most important features in the Western and Eastern U.S., respectively. The findings suggest that even the simplest NNs provide better air quality estimates, especially during high pollution events, which is beneficial for long-term exposure analysis. Future research should explore more sophisticated NN architectures with spatial and temporal variations in PM2.5 to improve the model performance.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.net/ark:/85065/d70v8j5n

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2025-01-05T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

<span style="font-family:Arial;font-size:10pt;font-style:normal;" data-sheets-root="1">Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.</span>

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-10T19:55:07.271122

Metadata language

eng; USA