Identification

Title

High-resolution, mobile Doppler radar observations of cyclic mesocyclogenesis in a supercell

Abstract

On 15 May 2003, two ground-based, mobile, Doppler radars scanned a supercell that moved through the Texas Panhandle and cyclically produced mesocyclones. The two radars collected data from the storm during a rapid cyclic mesocyclogenesis stage and a more slowly evolving tornadic period. A 3-cm-wavelength radar scanned the supercell continuously for a short time after it was cyclic but close to the time of tornadogenesis. A 5-cm-wavelength radar scanned the supercell the entire time it exhibited cyclic behavior and for an additional 30 min after that. The volumetric data obtained with the 5-cm-wavelength radar allowed for the individual circulations to be analyzed at multiple levels in the supercell. Most of the circulations that eventually dissipated moved rearward with respect to storm motion and were located at distances progressively farther away from the region of rear-flank outflow. The circulations associated with a tornado did not move nearly as far rearward relative to the storm. The mean circulation diameters were approximately 1 - 4 km and had lifetimes of 10 - 30 min. Circulation dissipation often, but not always, occurred following decreases in circulation diameter, while changes in maximum radial wind shear were not reliable indicators of circulation dissipation. In one instance, a pair of circulations rotated cyclonically around, and moved toward, each other; the two circulations then combined to form one circulation. Single-Doppler radial velocities from both radars were used to assess the differences between the pretornadic circulations and the tornadic circulations. Storm outflow in the rear flank of the storm increased notably during the time cyclic mesocyclogenesis slowed and tornado formation commenced. Large storm-relative inflow likely advected the pretornadic circulations rearward in the absence of organized outflow. The development of strong outflow in the rear flank probably balanced the strong inflow, allowing the tornadic circulations to stay in areas rich in vertical vorticity generation.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7222tzp

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2008-12-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2008 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-17T15:55:04.614184

Metadata language

eng; USA