Identification

Title

Modulation of tropical cyclogenesis by convectively coupled Kelvin waves

Abstract

Tropical cyclone numbers can vary from week to week within a hurricane season. Recent studies suggest that convectively coupled Kelvin waves can be partly responsible for such variability. However, the precise physical mechanisms responsible for that modulation remain uncertain partly due to the inability of previous studies to isolate the effects of Kelvin waves from other factors. This study uses an idealized modeling framework—called an aquaplanet—to uniquely isolate the effects of Kelvin waves on tropical cyclogenesis. The framework also captures the convective-scale dynamics of both tropical cyclones and Kelvin waves. Our results confirm an uptick in tropical cyclogenesis after the passage of a Kelvin wave—twice as many tropical cyclones form 2 days after a Kelvin wave peak than at any other time lag from the peak. A detailed composite analysis shows anomalously weak ventilation during and after (or to the west of) the Kelvin wave peak. The weak ventilation stems primarily from anomalously moist conditions, with weaker vertical wind shear playing a secondary role. In contrast to previous studies, our results demonstrate that Kelvin waves modulate both kinematic and thermodynamic synoptic-scale conditions that are necessary for tropical cyclone formation. These results suggest that numerical models must capture the three-dimensional structure of Kelvin waves to produce accurate subseasonal predictions of tropical cyclone activity.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.net/ark:/85065/d72n56mr

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2024-10-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

<span style="font-family:Arial;font-size:10pt;font-style:normal;font-weight:normal;" data-sheets-root="1">Copyright 2024 American Meteorological Society (AMS).</span>

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-10T19:58:05.080118

Metadata language

eng; USA