Identification

Title

A path toward short-term probabilistic flash flood prediction

Abstract

There are ongoing efforts to move beyond the current paradigm of using deter-ministic products driven by observation-only data to make binary warning decisions. Recent works have focused on severe thunderstorm hazards, such as hail, lightning, and tornadoes. This study discusses one of the first steps toward having probabilistic information combined with convective-scale short-term precipitation forecasts available for the prediction and warning of flash flooding. Participants in the Hydrometeorology Testbed-MRMS Hydrology (HMT-Hydro) experiment evaluated several probabilistic-based hydrologic model output from the probabilistic Flooded Locations and Simulated Hydrographs (PRO-FLASH) system during experimental real-time warning operations. Evaluation of flash flood warning performance combined with product sur-veys highlighted how forecasters perceived biases within the probabilistic information and how the different probabilistic approaches influenced warnings that were verified versus those that were unverified. The incorporation of the Warn-on-Forecast System (WoFS) ensemble precipita-tion forecasts into the PRO-FLASH product generation provided an opportunity to evaluate the first coupling of subhourly convective-scale ensemble precipitation forecasts with probabilistic hydrologic modeling at the flash flood warning time scale through archived case simulations. The addition of WoFS precipitation forecasts resulted in an increase in warning lead time, including four events with >= 29 min of additional lead time but with increased probabilities of false alarms. Additional feedback from participants provided insights into the application of WoFS forecasts into warning decisions, including how flash flood expectations and confidence evolved for verified flash flood events and how forecast probabilistic products can positively influence the communications of the potential for flash flooding.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7tx3k93

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2023-03-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2023 American Meteorological Society (AMS).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T15:54:00.099878

Metadata language

eng; USA