Identification

Title

GLObal Building heights for Urban Studies (UT-GLOBUS) for city- and street- scale urban simulations: Development and first applications

Abstract

We introduce University of Texas - GLObal Building heights for Urban Studies (UT-GLOBUS), a dataset providing building heights and urban canopy parameters (UCPs) for more than 1200 city or locales worldwide. UT-GLOBUS combines open-source spaceborne altimetry (ICESat-2 and GEDI) and coarse-resolution urban canopy elevation data with a machine-learning model to estimate building-level information. Validation using LiDAR data from six U.S. cities showed UT-GLOBUS-derived building heights had a root mean squared error (RMSE) of 9.1 meters. Validation of mean building heights within 1-km2 grid cells, including data from Hamburg and Sydney, resulted in an RMSE of 7.8 meters. Testing the UCPs in the urban Weather Research and Forecasting (WRF-Urban) model resulted in a significant improvement (55% in RMSE) in intra-urban air temperature representation compared to the existing table-based local climate zone approach in Houston, TX. Additionally, we demonstrated the dataset's utility for simulating heat mitigation strategies and building energy consumption using WRF-Urban, with test cases in Chicago, IL, and Austin, TX. Street-scale mean radiant temperature simulations using the SOlar and LongWave Environmental Irradiance Geometry (SOLWEIG) model, incorporating UT-GLOBUS and LiDAR-derived building heights, confirmed the dataset's effectiveness in modeling human thermal comfort in Baltimore, MD (daytime RMSE = 2.85 degrees C). Thus, UT-GLOBUS can be used for modeling urban hazards with significant socioeconomic and biometeorological risks, enabling finer scale urban climate simulations and overcoming previous limitations due to the lack of building information.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7w381jv

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2024-08-15T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-10T19:59:30.477965

Metadata language

eng; USA