Identification

Title

Impacts of Radio Occultation Data on Typhoon Forecasts as Explored by the Global MPAS-GSI System

Abstract

Global Navigation Satellite System (GNSS) radio occultation (RO) provides plentiful sounding profiles over regions lacking conventional observations. The Gridpoint Statistical Interpolation (GSI) hybrid system for assimilating RO data is integrated in this study with the Model for Prediction Across Scales-Atmosphere (MPAS) to improve tropical cyclone forecasts. After the MPAS-GSI assimilation cycles, dynamical vortex initialization (DVI) that may effectively spin up the initial inner typhoon vortex through cycled model integration is implemented to improve the initial analysis fit to the best track position as well as maximum wind or pressure intensity for Typhoon Nepartak (2016) that moved northwestward toward southern Taiwan. During the cycling assimilation, assimilation with RO data improves the temperature and moisture analysis, and largely reduces the forecast errors compared to those without RO data assimilation. The two RO operators that assimilate local bending angle or refractivity produce similar analyses, but the temperature and moisture increments from bending angle assimilation are slightly larger than those from refractivity assimilation. The MPAS forecasts at 60-15 km resolution show that the typhoon track prediction is improved with RO data, especially using bending angle data. The reduction in track deviations is explained by the wavenumber-one potential vorticity budget for several forecasts associated with the track deflection near southern Taiwan. Assimilation of RO data has fewer impacts on the typhoon intensity forecast compared to the DVI that largely improves the initial and thus forecasted intensity of the typhoon but at the cost of a slightly degraded track. Use of the enhanced 3 km resolution in the typhoon path also further improved the forecasts with and without the DVI. The feasible performance of the MPAS-GSI system with the RO data impact is also illustrated for Typhoon Mitag (2019), that passed around northern Taiwan.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7fx7f83

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2022-08-25T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:36:09.408377

Metadata language

eng; USA