Improved Madden–Julian oscillations with improved physics: The impact of modified convection parameterizations
Two modifications are made to the deep convection parameterization in the NCAR Community Climate System Model, version 3 (CCSM3): a dilute plume approximation and an implementation of the convective momentum transport (CMT). These changes lead to significant improvement in the simulated Madden-Julian oscillations (MJOs). With the dilute plume approximation, temperature and convective heating perturbations become more positively correlated. Consequently, more available potential energy is generated and the intraseasonal variability (ISV) becomes stronger. The organization of ISV is also improved, which is manifest in coherent structures between different MJO phases and an improved simulation of the eastward propagation of MJOs with a reasonable eastward speed. The improved propagation can be attributed to a better simulation of the low-level zonal winds due to the inclusion of CMT. The authors posit that the large-scale zonal winds are akin to a selective conveyor belt that facilitates the organization of ISVs into highly coherent structures, which are important features of observed MJOs. The conclusions are supported by two supplementary experiments, which include the dilute plume approximation and CMT separately.
document
http://n2t.net/ark:/85065/d7wd418v
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2012-02-15T00:00:00Z
Copyright 2012 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:59:35.755500