Identification

Title

Multi-model simulation of CO and HCHO in the Southern Hemisphere: Comparison with observations and impact of biogenic emissions

Abstract

We investigate the impact of biogenic emissions on carbon monoxide (CO) and formaldehyde (HCHO) in the Southern Hemisphere (SH), with simulations using two different biogenic emission inventories for isoprene and monoterpenes. Results from four atmospheric chemistry models are compared to continuous long-term ground-based CO and HCHO column measurements at the SH Network for the Detection of Atmospheric Composition Change (NDACC) sites, the satellite measurement of tropospheric CO columns from the Measurement of Pollution in the Troposphere (MOPITT), and in situ surface CO measurements from across the SH, representing a subset of the National Oceanic and Atmospheric Administration's Global Monitoring Division (NOAA GMD) network. Simulated mean model CO using the Model of Emissions of Gases and Aerosols from Nature (v2.1) computed in the frame work of the Land Community Model (CLM-MEGANv2.1) inventory is in better agreement with both column and surface observations than simulations adopting the emission inventory generated from the LPJ-GUESS dynamical vegetation model framework, which markedly underestimate measured column and surface CO at most sites. Differences in biogenic emissions cause large differences in CO in the source regions which propagate to the remote SH. Significant inter-model differences exist in modelled column and surface CO, and secondary production of CO dominates these inter-model differences, due mainly to differences in the models' oxidation schemes for volatile organic compounds, predominantly isoprene oxidation. While biogenic emissions are a significant factor in modelling SH CO, inter-model differences pose an additional challenge to constrain these emissions. Corresponding comparisons of HCHO columns at two SH mid-latitude sites reveal that all models significantly underestimate the observed values by approximately a factor of 2. There is a much smaller impact on HCHO of the significantly different biogenic emissions in remote regions, compared to the source regions. Decreased biogenic emissions cause decreased CO export to remote regions, which leads to increased OH; this in turn results in increased HCHO production through methane oxidation. In agreement with earlier studies, we corroborate that significant HCHO sources are likely missing in the models in the remote SH.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7vh5q13

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2015-07-02T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright Author(s) 2015. This work is distributed under the Creative Commons Attribution 3.0 License

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:59:46.534526

Metadata language

eng; USA