Identification

Title

Quantifying uncertainty in projections of regional climate change: A Bayesian approach to the analysis of multimodel ensembles

Abstract

A Bayesian statistical model is proposed that combines information from a multimodel ensemble of atmosphere–ocean general circulation models (AOGCMs) and observations to determine probability distributions of future temperature change on a regional scale. The posterior distributions derived from the statistical assumptions incorporate the criteria of bias and convergence in the relative weights implicitly assigned to the ensemble members. This approach can be considered an extension and elaboration of the reliability ensemble averaging method. For illustration, the authors consider the output of mean surface temperature from nine AOGCMs, run under the A2 emission scenario from the Synthesis Report on Emission Scenarios (SRES), for boreal winter and summer, aggregated over 22 land regions and into two 30-yr averages representative of current and future climate conditions. The shapes of the final probability density functions of temperature change vary widely, from unimodal curves for regions where model results agree (or outlying projections are discounted) to multimodal curves where models that cannot be discounted on the basis of bias give diverging projections. Besides the basic statistical model, the authors consider including correlation between present and future temperature responses, and test alternative forms of probability distributions for the model error terms. It is suggested that a probabilistic approach, particularly in the form of a Bayesian model, is a useful platform from which to synthesize the information from an ensemble of simulations. The probability distributions of temperature change reveal features such as multimodality and long tails that could not otherwise be easily discerned. Furthermore, the Bayesian model can serve as an interdisciplinary tool through which climate modelers, climatologists, and statisticians can work more closely. For example, climate modelers, through their expert judgment, could contribute to the formulations of prior distributions in the statistical model.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7j966x2

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2005-05-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2005 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 of the U.S. Copyright Act or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC §108, as revised by P.L. 94-553) does not require the AMS's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statement, requires written permission or a license form the AMS. Additional details are provided in the AMS Copyright Policy, available on the AMS Web site located at (http://www.ametsoc.org/AMS) or from the AMS at 617-227-2425 or copyright@ametsoc.org.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-17T17:07:33.208340

Metadata language

eng; USA