A comparison study of extreme precipitation from six different regional climate models via spatial hierarchical modeling
We analyze output from six regional climate models (RCMs) via a spatial Bayesian hierarchical model. The primary advantage of this approach is that the statistical model naturally borrows strength across locations via a spatial model on the parameters of the generalized extreme value distribution. This is especially important in this application as the RCM output we analyze have extensive spatial coverage, but have a relatively short temporal record for characterizing extreme behavior. The hierarchical model we employ is also designed to be computationally efficient as we analyze RCM output for nearly 12000 locations. The aim of this analysis is to compare the extreme precipitation as generated by these RCMs. Our results show that, although the RCMs produce similar spatial patterns for the 100-year return level, their characterizations of extreme precipitation are quite different. Additionally, we examine the spatial behavior of the extreme value index and find differing spatial patterns for the point estimates for the RCMs. However, these differences may not be significant given the uncertainty associated with estimating this parameter.
document
http://n2t.net/ark:/85065/d7g16238
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2009-12-18T00:00:00Z
An edited version of this paper was published by Springer. Copyright 2009, Springer Science+Business Media, LLC.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:21:28.454965