Climate modeling with spectral elements
As an effort toward improving climate model--component performance and accuracy, an atmospheric-component climate model has been developed, entitled the Spectral Element Atmospheric Climate Model and denoted as CAM_SEM. CAM_SEM includes a unique dynamical core coupled at this time to the physics component of the Community Atmosphere Model (CAM) as well as the Community Land Model. This model allows the inclusion of local mesh refinement to seamlessly study imbedded higher-resolution regional climate concurrently with the global climate. Additionally, the numerical structure of the model based on spectral elements allows for application of state-of-the-art computing hardware most effectively and economically to produce the best prediction/simulation results with minimal expenditure of computing resources. The model has been tested under various conditions beginning with the shallow water equations and ending with an Atmospheric Model Intercomparison Project (AMIP)-style run that uses initial conditions and physics comparable to the CAM2 (version 2 of the NCAR CAM climate model) experiments. For uniform resolution, the output of the model compares favorably with the published output from the CAM2 experiments. Further integrations with local mesh refinement included indicate that while greater detail in the prediction of mesh-refined regions--that is, regional climate--is observed, the remaining coarse-grid results are similar to results obtained from a uniform-grid integration of the model with identical conditions. It should be noted that in addition to spectral elements, other efficient schemes have lately been considered, in particular the finite-volume scheme. This scheme has not yet been incorporated into CAM_SEM. The two schemes--finite volume and spectral element--are quasi-independent and generally compatible, dealing with different aspects of the integration process. Their impact can be assessed separately and the omission of the finite-volume process herein will not detract from the evaluation of the results using the spectral-element method alone.
document
http://n2t.net/ark:/85065/d78k79fp
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2006-12-01T00:00:00Z
Copyright 2006 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:39:32.113205