Identification

Title

Wave steepening in ionospheric total electron density due to the 21 August 2017 total solar eclipse

Abstract

This study shows that a supersonic moon shadow of a total solar eclipse can steepen the ionospheric total electron content (TEC) wave on August 21, 2017. A data-adaptive method named Hilbert-Huang transform is employed to examine the nonlinear and non-stationary evolution of the waves. The results show that the TEC wave behaves as a traveling ionospheric disturbance before the totality appearance, turns later into steepening, and breaks eventually. A TEC wave with a period of similar to 40 min and wavelength of similar to 1,000 km propagates mainly in an east-southward direction before the totality appearance. The wave amplitude and scales, respectively, increases and reduce by near similar to 50% as the moon shadow approaches the western coast of the continental United States. The short-period TEC waves (period similar to 2 min) reveal that the wave may break eventually when the wave gets steeper. The steepness of the TEC wave is reconstructed according to the constructive interference.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d77s7s5n

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2021-03-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2021 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:15:02.134796

Metadata language

eng; USA