Identification

Title

Three-dimensional evolution of simulated long-lived squall lines

Abstract

Simulations of squall lines, using nonhydrostatic convection-resolving models, have been limited to two dimensions or three dimensions with the assumption of along-line periodicity. The authors present 3D nonhydrostatic convection-resolving simulations, produced using an adaptive grid model, where the lines are finite in length and the restriction to along-line periodicity is removed. The base state for the simulations is characterized by weak, shallow shear and high convective available potential energy (CAPE), an environment in which longlived midlatitude mesoscale convective systems (MCSs) are observed. The simulated systems bear strong resemblance to many observed systems, suggesting that large-scale forcing, absent in the horizontally homogeneous environment, is not needed to produce many of the distinguishing features of midlatitude MCSs. In simulations without Coriolis forcing, the presence of line ends leads to mature symmetric systems characterized by a central region of strong convection, trailing flanks of weaker convection, and a strong, centrally focused rear inflow. Simulations that include Coriolis forcing lead to asymmetric systems with significant system growth and migration to the right (south) of the original system centerline. In both cases the evolution of the leading-line convection is primarily controlled by the surface cold pool expansion, with Coriolis forcing promoting rightward system propagation. In the Coriolis simulation, a midlevel mesoscale convective vortex (MCV) forms in the north, to the rear of the convection, while the outflow region aloft is strongly anticyclonic. The northern location of the MCV is coincident with and influenced by a northward bias in the positive buoyancy anomaly aloft. Midlevel vertical vorticity generation by tilting of horizontal vorticity, both ambient and baroclinically generated, is observed in both the Coriolis and no-Coriolis simulations. On larger scales, the convergence of Coriolis rotation generates significant vorticity and is crucial to the formation of the MCV.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7qf8sq3

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

1994-09-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 1994 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-17T17:57:41.503523

Metadata language

eng; USA