Identification

Title

Optimizing precipitation forecasts for hydrological catchments in Ethiopia using statistical bias correction and multi-modeling

Abstract

Accurate rainfall forecasts on timescales ranging from a few hours to several weeks are needed for many hydrological applications. This study examines bias, skill and reliability of four ensemble forecast systems (from Canada, UK, Europe, and the United States) and a multi-model ensemble as applied to Ethiopian catchments. By verifying these forecasts on hydrological catchments, we focus on spatial scales that are relevant to many actual water forecasting applications, such as flood forecasting and reservoir optimization. By most verification metrics tested, the bias corrected European model is the best individual model at predicting daily rainfall variations, while the Canadian model shows the most realistic ensemble spread and thus the most reliable forecast probabilities, including those of extreme events. The skill of the multi-model ensemble outperforms individual models by most metrics, and is skillful up to 9 days ahead. Skill is higher for the 0-5 day model accumulation than for the first 24 h, suggesting that timing errors strongly penalize the skill of forecasts with shorter accumulation periods. Due to seasonality in the model biases, bias correction is best applied to each month individually. Forecasting extreme rainfall is a challenge for Ethiopia, especially over mountainous regions where positive skill is only reached after bias correction. Compared to individual models, the multi-model ensemble has a higher probability of detecting extreme rainfall and a lower false alarm rate, with usable skill at 24 h lead times.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7pg1w5j

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2021-06-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T16:15:00.950205

Metadata language

eng; USA