Identification

Title

Investigation of the viscous potential using an MHD simulation

Abstract

The viscous interaction between the solar wind and Earth's magnetosphere is extremely difficult to study through direct observations. The viscous contribution to the polar cap potential, the viscous potential, is typically swamped by the much larger reconnection potential or obscured by rapidly changing solar wind conditions. We used the Lyon-Fedder-Mobarry (LFM) magnetohydrodynamic simulation to study the response of the viscous potential to a variety of ideal conditions both in the solar wind and the ionosphere. We found that the viscous potential in LFM increases with either increasing solar wind density or velocity, with a relation that is similar to some previous empirical results in form but different in detail. The density dependence scales as n⁰.⁴³⁹ (in cm⁻³) and velocity scales as Vx¹.³³ (in km s⁻¹). Combining these results with a reference value, the viscous potential in LFM can be predicted using the formula ΦV = (0.00431)n⁰.⁴³⁹Vx¹.³³ kV. We also found that the viscous potential changes inversely in relation to constant Pedersen conductivity in an idealized ionosphere, a result that was previously predicted for LFM but not explored until now.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7222vdx

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2012-03-13T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2012 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:46:39.187499

Metadata language

eng; USA