Topographic effects on a wintertime cold front in Taiwan
This paper describes an observational and numerical study of an intense wintertime cold front that occurred in Taiwan on 8 January 1996. The front was associated with rope clouds at the leading edge, and a broad area of stratiform clouds behind. The front was blocked by the Central Mountain Range of Taiwan and divided into two sections on each side of the mountain range. As the cold air moved southward along the east coast, the increasing westward Coriolis force induced a landward acceleration. After the cold air piled up against the mountains, a coastal pressure ridge developed. The cold air damming yielded a geostrophic balance between the westward Coriolis force and the eastward component of the pressure gradient force in the x direction, and a southward acceleration in the y direction mainly caused by the southward pressure gradient force component. Over the Taiwan Strait, southward pressure gradient forces increased when the low-level stable cold air was confined over the Taiwan Strait, leading to a southward acceleration of the cold air. The formation of a windward ridge off the northwest coast of Taiwan contributed to a large southward acceleration, resulting in the development of a coastal jet. Over the Taiwan Strait, the cold air moved southward the fastest due to the channeling effect. The air parcels along the east coast of Taiwan experienced a downgradient acceleration from the cold air damming and advanced at a slower speed. Those traveling over the western plains and the nearshore coast advanced at the slowest speed. Two sensitivity runs, one without Taiwan's topography (flat land only) and the other without Taiwan's landmass, demonstrated the influences of Taiwan's terrain and water-land contrast on the airflow. The run with no surface fluxes showed that the ocean modified the low-level cold air by supplying surface heat and moisture fluxes. This weakened the front, reduced low-level stability, and increased forced shallow convection (formation of rope clouds) at the leading edge.
document
https://n2t.org/ark:/85065/d71r6rt5
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2006-11-01T00:00:00Z
Copyright 2006 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2025-07-17T17:04:27.464789