Identification

Title

National Weather Service (NWS) forecasters’ perceptions of AI/ML and its use in operational forecasting

Abstract

Artificial intelligence and machine learning (AI/ML) have attracted a great deal of attention from the atmospheric science community. The explosion of attention on AI/ML development carries implications for the operational community, prompting questions about how novel AI/ML advancements will translate from research into operations. However, the field lacks empirical evidence on how National Weather Service (NWS) forecasters, as key intended users, perceive AI/ML and its use in operational forecasting. This study addresses this crucial gap through structured interviews conducted with 29 NWS forecasters from October 2021 through July 2023 in which we explored their perceptions of AI/ML in forecasting. We found that forecasters generally prefer the term “machine learning” over “artificial intelligence” and that labeling a product as being AI/ML did not hurt perceptions of the products and made some forecasters more excited about the product. Forecasters also had a wide range of familiarity with AI/ML, and overall, they were (tentatively) open to the use of AI/ML in forecasting. We also provide examples of specific areas related to AI/ML that forecasters are excited or hopeful about and that they are concerned or worried about. One concern that was raised in several ways was that AI/ML could replace forecasters or remove them from the forecasting process. However, forecasters expressed a widespread and deep commitment to the best possible forecasts and services to uphold the agency mission using whatever tools or products that are available to assist them. Last, we note how forecasters’ perceptions evolved over the course of the study.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.net/ark:/85065/d7794913

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2024-11-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

<span style="font-family:Arial;font-size:10pt;font-style:normal;font-weight:normal;" data-sheets-root="1">Copyright 2024 American Meteorological Society (AMS).</span>

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-10T19:57:33.329136

Metadata language

eng; USA