Identification

Title

Forecast uncertainty dynamics in the THORPEX Interactive Grand Global Ensemble (TIGGE)

Abstract

This paper employs local linear, spatial spectral, and Lorenz curve–based diagnostics to investigate the dynamics of uncertainty in global numerical weather forecasts in the NH extratropics. The diagnostics are applied to ensembles in the THORPEX Interactive Grand Global Ensemble (TIGGE). The initial growth of uncertainty is found to be the fastest at the synoptic scales (zonal wavenumbers 7-9) most sensitive to baroclinic instability. At later forecast times, the saturation of uncertainties at the synoptic scales and the longer sustainable growth of uncertainty at the large scales lead to a gradual shift of the wavenumber of the dominant uncertainty toward zonal wavenumber 5. At the subsynoptic scales, errors saturate as predicted by Lorenz’s classic theory. While the ensembles capture the general characteristics of the uncertainty dynamics efficiently, there are locations where the predicted magnitude and structure of uncertainty have considerable time-mean errors. In addition, the magnitude of systematic errors in the prediction of the uncertainty increases with increasing forecast time. These growing systematic errors are dominated by errors in the prediction of low-frequency changes in the large-scale flow.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7154jp8

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2016-07-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2016 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:02:43.555647

Metadata language

eng; USA