Identification

Title

Regional to global evolution of impacts of parameterized mountain-wave drag in the lower stratosphere

Abstract

Mountain ranges are regional features on Earth, as are the regions of mountain-wave drag (MWD) exerted by dissipating atmospheric gravity waves generated by flow over them. However, these regional drags have significant global- or zonal-mean impacts on Earth's atmospheric general circulation (e.g., slowing of the polar night jet). The objective of this work is to understand the regional to global evolution of these impacts. The approach is to track the evolution of MWD-generated potential vorticity (PV) over the winter using the Whole Atmosphere Community Climate Model (WACCM). Within an ensemble of winter-long runs with and without MWD, lower-stratospheric PV is generated over mountains and advected downstream, generating large-scale PV banners. These PV banners are diffused but survive this diffusion and are reinforced over downstream mountain ranges, accumulating into zonal-mean or global features within WACCM. A simple 2D model representing sources, advection, and diffusion of "passive PV" recreates the salient features in the WACCM results, suggesting the winter-long evolution of MWD-generated PV can be crudely understood in terms of horizontal advection and diffusion within a global vortex. In the Northern Hemisphere, cyclonic, equatorward PV banners accumulate zonally into a single zonally symmetric positive PV anomaly. The anticyclonic, poleward PV banners also accumulate into a zonally symmetric feature, but then diffuse over the North Pole into a negative PV polar cap. In the Southern Hemisphere, the same processes are at work, though the different geographic configuration of mountain ranges leads to different patterns of impacts.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7445qp9

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2020-04-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2020 American Meteorological Society (AMS).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T19:20:18.351360

Metadata language

eng; USA