Identification

Title

An improved coupled data assimilation system with a CGCM using multi-time-scale high-efficiency EnOI-like filtering

Abstract

Coupled data assimilation (CDA), which combines coupled models and observations from multiple Earth system domains, plays a critical role in climate studies by producing a four-dimensional estimation of Earth system states. Traditional ensemble Kalman filter (EnKF) CDA algorithms, while convenient to implement in multiple DA components in a coupled system, are, however, expensive and lack sufficient representativeness for low-frequency background flows. Here, a multi-time-scale high-efficiency approximate filter with ensemble optimal interpolation (MSHea-EnOI) scheme has been implemented with a global fully coupled model. It consists of stationary, low-frequency, and high-frequency filters constructed from the time series of a single-model solution with improved representativeness for low-frequency background error statistics and enhanced computational efficiency. The MSHea-EnOI is evaluated in a biased twin experiment framework with synthetic '' observations '' produced by another coupled model, and a three-decade coupled reanalysis experiment with real observations. Results show that with increased representativeness on multiscale background flows, while computationally costing only a small fraction of ensemble-based CDA, the MSHea-EnOI shows the potential to improve CDA quality with synthetic observations. The coupled reanalysis experiment with real observations also shows reasonable fittings to observations and comparable results to other reanalysis products using different DA schemes. While reconstructing a close-to-rapid Atlantic meridional overturning circulation, the coupled reanalysis reproduces most of the atmosphere and ocean reanalysis signals such as the Hadley circulation and upper ocean heat content. The MSHea-EnOI could have good application potential in ensemble-based DA systems in terms of its multiscale property and computational efficiency.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7t72nk7

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2023-09-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2023 American Meteorological Society (AMS).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T15:15:11.075688

Metadata language

eng; USA