Identification

Title

North Atlantic Oscillation response in GeoMIP experiments G6solar and G6sulfur: Why detailed modelling is needed for understanding regional implications of solar radiation management

Abstract

The realization of the difficulty of limiting global-mean temperatures to within 1.5 or 2.0 degrees C above preindustrial levels stipulated by the 21st Conference of Parties in Paris has led to increased interest in solar radiation management (SRM) techniques. Proposed SRM schemes aim to increase planetary albedo to reflect more sunlight back to space and induce a cooling that acts to partially offset global warming. Under the auspices of the Geoengineering Model Intercomparison Project, we have performed model experiments whereby global temperature under the high-forcing SSP5-8.5 scenario is reduced to follow that of the medium-forcing SSP2-4.5 scenario. Two different mechanisms to achieve this are employed: the first via a reduction in the solar constant (experiment G6solar) and the second via modelling injections of sulfur dioxide (experiment G6sulfur) which forms sulfate aerosol in the stratosphere. Results from two state-of-the-art coupled Earth system models (UKESM1 and CESM2-WACCM6) both show an impact on the North Atlantic Oscillation (NAO) in G6sulfur but not in G6solar. Both models show a persistent positive anomaly in the NAO during the Northern Hemisphere winter season in G6sulfur, suggesting an increase in zonal flow and an increase in North Atlantic storm track activity impacting the Eurasian continent and leading to high-latitude warming over Europe and Asia. These results are broadly consistent with previous findings which show similar impacts from stratospheric volcanic aerosol on the NAO and emphasize that detailed modelling of geoengineering processes is required if accurate impacts of SRM effects are to be simulated. Differences remain between the two models in predicting regional changes over the continental USA and Africa, suggesting that more models need to perform such simulations before attempting to draw any conclusions regarding potential continental-scale climate change under SRM.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7qn6b4d

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2021-01-29T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:13:54.479414

Metadata language

eng; USA