Identification

Title

Role of the QBO in modulating the influence of the 11 year solar cycle on the atmosphere using constant forcings

Abstract

We present a set of six 20 year experiments made with a state-of-the-art chemistry-climate model that incorporates the atmosphere from the surface to the lower thermosphere. The response of the middle atmosphere to the 11 year solar cycle, its impact on the troposphere, and especially the role of an externally prescribed stratospheric quasi-biennial oscillation (QBO) is investigated with NCAR's Whole Atmosphere Community Climate Model (WACCM3). The model experiments use either fixed solar cycle inputs or fixed solar cycle together with prescribed QBO phase. The annual mean solar response in temperature and ozone in the upper stratosphere is in qualitative agreement with other modeling and observational studies and does not depend on the presence of the imposed QBO. However, the solar response in the middle to lower stratosphere differs significantly for the two QBO phases. During solar maxima a weaker Brewer-Dobson circulation with relative downwelling, warming, and enhanced ozone occurs in the tropical lower stratosphere during QBO east conditions, while a stronger circulation, cooling, and decreased ozone exists during QBO west conditions. The net ozone increase during QBO east is the combined result of production and advection, whereas during QBO west the effects cancel each other and result in little net ozone changes. Especially during Southern Hemisphere late winter to early spring, the solar response at polar latitudes switches sign between the two QBO phases and qualitatively confirms observations and other recent model studies. During a poleward downward modulation of the polar night jet and a corresponding modulation of the Brewer-Dobson circulation in time, solar signals are detected all the way down to the extratropical troposphere. Possible limitations of the model experiments with respect to the fixed solar cycle conditions or the prescribed QBO phases, as well as the constant sea surface temperatures, are discussed.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7n01709

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2010-09-21T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

An edited version of this paper was published by AGU. Copyright 2010 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-17T15:23:46.589758

Metadata language

eng; USA