Identification

Title

Accurate assessment of land-atmosphere coupling in climate models requires high-frequency data output

Abstract

Land-atmosphere (L-A) interactions are important for understanding convective processes, climate feedbacks, the development and perpetuation of droughts, heatwaves, pluvials, and other land-centered climate anomalies. Local L-A coupling (LoCo) metrics capture relevant L-A processes, highlighting the impact of soil and vegetation states on surface flux partitioning and the impact of surface fluxes on boundary layer (BL) growth and development and the entrainment of air above the BL. A primary goal of the Climate Process Team in the Coupling Land and Atmospheric Subgrid Parameterizations (CLASP) project is parameterizing and characterizing the impact of subgrid heterogeneity in global and regional Earth system models (ESMs) to improve the connection between land and atmospheric states and processes. A critical step in achieving that aim is the incorporation of L-A metrics, especially LoCo metrics, into climate model diagnostic process streams. However, because land-atmosphere interactions span timescales of minutes (e.g., turbulent fluxes), hours (e.g., BL growth and decay), days (e.g., soil moisture memory), and seasons (e.g., variability in behavioral regimes between soil moisture and latent heat flux), with multiple processes of interest happening in different geographic regions at different times of year, there is not a single metric that captures all the modes, means, and methods of interaction between the land and the atmosphere. And while monthly means of most of the LoCo-relevant variables are routinely saved from ESM simulations, data storage constraints typically preclude routine archival of the hourly data that would enable the calculation of all LoCo metrics.Here, we outline a reasonable data request that would allow for adequate characterization of sub-daily coupling processes between the land and the atmosphere, preserving enough sub-daily output to describe, analyze, and better understand L-A coupling in modern climate models. A secondary request involves embedding calculations within the models to determine mean properties in and above the BL to further improve characterization of model behavior. Higher-frequency model output will (i) allow for more direct comparison with observational field campaigns on process-relevant timescales, (ii) enable demonstration of inter-model spread in L-A coupling processes, and (iii) aid in targeted identification of sources of deficiencies and opportunities for improvement of the models.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7tf02hm

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2024-02-29T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-10T20:03:58.814868

Metadata language

eng; USA