Identification

Title

Ambient factors controlling the wintertime precipitation distribution across mountain ranges in the interior western United States. Part I: Insights from regional climate simulations

Abstract

This study analyzes the control of upstream conditions on the distribution of wintertime precipitation across mountain ranges in the interior western United States using 10 winters of high-resolution regional climate model data. Three mountain ranges, the Wind River Range, the Park Range, and the Teton Range, are selected to explore the statistical relations between the precipitation distribution and upstream wind, stability, and cloud conditions. A 4-km-resolution simulation is used for the former two ranges, and a 1.33-km-resolution simulation driven by the 4-km-resolution simulation is used for the Teton Range, which is smaller and steeper. Across all three mountain ranges, the dominant factor controlling precipitation is the mountain-normal low-level wind speed. Statistically, stronger wind results in heavier precipitation and a lower upwind precipitation fraction. The low-level wind generally veers with height during precipitation events, but the amount of veering does not unambiguously affect the precipitation distribution or intensity. The more the terrain blocks the upstream flow, the more the precipitation shifts toward the upstream side of the mountain and the weaker the overall precipitation rate is. A higher cloud-base temperature and a lower cloud-base height typically are associated with heavier precipitation. Deeper clouds tend to produce heavier precipitation and a slightly lower windward/leeward contrast. Convective precipitation proportionally falls more on the lee slopes than stratiform precipitation. The upstream and macroscale cloud conditions identified herein predict both the mean precipitation rate and the upwind precipitation fraction very well for the three ranges studied here.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d76t0qhp

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2018-08-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2018 American Meteorological Society (AMS).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:27:11.424998

Metadata language

eng; USA