Identification

Title

Influence of organized turbulence on OH reactivity at a deciduous forest

Abstract

Oxidation of reactive carbon fuels climate- and pollution-relevant chemistry. Deciduous forests are important sources of reactive carbon (particularly isoprene). Organization in turbulence can physically separate ("segregate") oxidants from reactive carbon, causing oxidation to increase or decrease relative to the (ubiquitous) assumption of well-mixed conditions. We use large eddy simulation coupled to a multilayer canopy model and simplified chemistry to quantify the impact of segregation on near-canopy hydroxyl radical (OH) reactivity. Simulations mimic summer clear-sky midday and morning conditions at a homogeneous deciduous forest. OH-isoprene segregation alters OH reactivity inside the canopy by up to 9%, but the impact strongly depends on height, soil NO emissions, and sunlight. Uniquely, we identify the drivers of changes by isolating the roles of isoprene and OH. Our findings also suggest that segregation may create discrepancies between direct measurements and bottom-up estimates of OH reactivity, separate from the issue of mischaracterized or unknown OH sinks.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7ww7nn6

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2023-04-16T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:20:19.927517

Metadata language

eng; USA