Development of an intense, warm-core mesoscale vortex associated with the 8 May 2009 "super derecho" convective event
In this study, the dynamical processes contributing to warm-core meso-β-scale vortex formation associated with the 8 May 2009 "super derecho" are examined utilizing two complementary quasi-Lagrangian approaches--a circulation budget and backward trajectory analyses--applied to a fortuitous numerical simulation of the event. Warm-core meso-β-scale vortex formation occurs in a deeply moist, potentially stable environment that is conducive to the development of near-surface rotation and is somewhat atypical compared to known derecho-supporting environments. Air parcels in the vicinity of the developing vortex primarily originate near the surface in the streamwise vorticity-rich environment, associated with the vertical wind shear of the low-level jet, immediately to the east of the eastward-moving system. Cyclonic vertical vorticity is generated along inflowing air parcels primarily by the ascent-induced tilting of streamwise vorticity and amplified primarily by ascent-induced vortex tube stretching. Descent-induced tilting of crosswise vorticity contributes to cyclonic vertical vorticity generation for the small population of air parcels in the vicinity of the developing vortex that originate to its north and west. No consistent source of preexisting vertical vorticity is present within the environment. Cyclonic circulation on the scale of the warm-core meso-β-scale vortex increases in the lower troposphere in response to the mean vortex-scale convergence of cyclonic absolute vorticity and the local expulsion of eddy anticyclonic vertical vorticity generated within the system’s cold pool. Increased cyclonic circulation is partially offset by the system-scale tilting of horizontal vorticity associated with the low-level jet, rear-inflow jet, environmental vertical wind shear, and rotational flow of the warm-core vortex itself.
document
http://n2t.net/ark:/85065/d7ff3t89
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2014-03-01T00:00:00Z
Copyright 2014 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:23:56.811130