Identification

Title

Implementing plant hydraulics in the Community Land Model, Version 5

Abstract

Version 5 of the Community Land Model (CLM5) introduces the plant hydraulic stress (PHS) configuration of vegetation water use, which is described and compared with the corresponding parameterization from CLM4.5. PHS updates vegetation water stress and root water uptake to better reflect plant hydraulic theory, advancing the physical basis of the model. The new configuration introduces prognostic vegetation water potential, modeled at the root, stem, and leaf levels. Leaf water potential replaces soil potential as the basis for stomatal conductance water stress, and root water potential is used to implement hydraulic root water uptake, replacing a transpiration partitioning function. Point simulations of a tropical forest site (Caxiuana, Brazil) under ambient conditions and partial precipitation exclusion highlight the differences between PHS and the previous CLM implementation. Model description and simulation results are contextualized with a list of benefits and limitations of the new model formulation, including hypotheses that were not testable in previous versions of the model. Key results include reductions in transpiration and soil moisture biases relative to a control model under both ambient and exclusion conditions, correcting excessive dry season soil moisture stress in the control model. PHS implements hydraulic gradient root water uptake, which allows hydraulic redistribution and compensatory root water uptake and results in PHS utilizing a larger portion of the soil column to buffer shortfalls in precipitation. The new model structure, which bases water stress on leaf water potential, could have significant implications for vegetation-climate feedbacks, including increased sensitivity of photosynthesis to atmospheric vapor pressure deficit.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7x06b2t

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2019-02-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2019 Author(s). This work is licensed under a Creative Commons Attribution 4.0 International license.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:24:36.930406

Metadata language

eng; USA