Identification

Title

Spatio-temporal transferability of environmentally-dependent population models: Insights from the intrinsic predictabilities of Adélie penguin abundance time series

Abstract

Ecological predictions are necessary for testing whether processes hypothesized to regulate species population dynamics are generalizable across time and space. In order to demonstrate generalizability, model predictions should be transferable in one or more dimensions, where transferability is the successful prediction of responses outside of the model data bounds. While much is known as to what makes spatially-oriented models transferable, there is no general consensus as to the spatio-temporal transferability of ecological time series models. Here, we examine whether the intrinsic predictability of a time series, as measured by its complexity, could limit such transferability using an exceptional long-term dataset of Adelie penguin breeding abundance time series collected at 24 colonies around Antarctica. For each colony, we select a suite of environmental variables from the Community Earth System Model, version 2 to predict population growth rates, before assessing how well these environmentally-dependent population models transfer temporally and how reliably temporal signals replicate through space. We show that weighted permutation entropy (WPE), a model-free measure of intrinsic predictability recently introduced to ecology, varies spatially across Adelie penguin populations, perhaps in response to stochastic environmental events. We demonstrate that WPE can strongly limit temporal predictive performance, although this relationship could be weakened if intrinsic predictability is not constant over time. Lastly, we show that WPE can also limit spatial forecast horizon, which we define as the decay in spatial predictive performance with respect to the physical distance between focal colony and predicted colony. Irrespective of intrinsic predictability, spatial forecast horizons for all Adelie penguin breeding colonies included in this study are surprisingly short and our population models often have similar temporal and spatial predictive performance compared to null models based on long-term average growth rates. For cases where time series are complex, as measured by WPE, and the transferability of biologically-motivated mechanistic models are poor, we advise that null models should instead be used for prediction. These models are likely better at capturing more generalizable relationships between average growth rates and long-term environmental conditions. Lastly, we recommend that WPE can provide valuable insights when evaluating model performance, designing sampling or monitoring programs, or assessing the appropriateness of preexisting datasets for making conservation management decisions in response to environmental change.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7qr522v

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2023-06-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T15:17:15.075393

Metadata language

eng; USA