Identification

Title

The impact of multi-satellite data on the initialization and simulation of Hurricane Lili's (2002) rapid weakening phase

Abstract

Numerical experiments have been conducted to examine the impact of multisatellite data on the initialization and forecast of the rapid weakening of Hurricane Lili (in 2002) from 0000 UTC to landfall in Louisiana on 1300 UTC 3 October 2002. Fifth-generation Pennsylvania State University-National Center for Atmospheric Research (PSU-NCAR) Mesoscale Model (MM5) 4DVAR sensitivity runs were conducted separately with QuikSCAT surface winds, the Geostationary Operational Environmental Satellite-8 (GOES-8) cloud drift-water vapor winds, and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) temperature-dewpoint sounding data to investigate their individual impact on storm track and intensity. The results were compared against a simulation initialized from a Global Forecast System background interpolated to the MM5 grid. Assimilating QuikSCAT surface wind data improves the analyzed outer-core surface winds, as well as the inner-core low-level temperature and moisture fields. Substantial adjustments of winds are noted on the periphery of the hurricane by assimilating GOES-8 satellite-derived upper-level winds. Both track forecasts initialized at 1200 UTC 2 October 2002 with four-dimensional variational data assimilation (4DVAR) of QuikSCAT and GOES-8 show improvement compared to those initialized with the model background. Assimilating Aqua MODIS sounding data improves the outer-core thermodynamic features. The Aqua MODIS data has a slight impact on the track forecast, but more importantly shows evidence of impacting the model intensity predicting by retarding the incorrect prediction of intensification. All three experiments also show that bogusing of an inner-core wind vortex is required to depict the storm's initial intensity. To properly investigate Lili's weakening, data assimilation experiments that incorporate bogusing vortex, QuikSCAT winds, GOES-8 winds, and Aqua MODIS sounding data were performed. The 4DVAR satellite-bogus data assimilation is conducted in two consecutive 6-h windows preceding Lili's weakening. Comparisons of the results between the experiments with and without satellite data indicated that the satellite data, particularly the Aqua MODIS sounding information, makes an immediate impact on the hurricane intensity change beyond normal bogusing procedures. The track forecast with the satellite data is also more accurate than just using bogusing alone. This study suggests that dry air intrusion played an important role in Lili's rapid weakening. It also demonstrates the potential benefit of using satellite data in a 4DVAR context-particularly high-resolution soundings-on unusual cases like Hurricane Lili.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7k35twx

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2007-02-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2007 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-17T17:03:17.924837

Metadata language

eng; USA