Identification

Title

Revisiting the modulations of ionospheric solar and lunar migrating tides during the 2009 stratospheric sudden warming by using Global Ionosphere Specification

Abstract

In this study, Global Ionosphere Specification (GIS) based on Gauss-Markov Kalman filter assimilation of slant total electron content observed from ground-based global positioning system receivers and space-based radio occultation instrumentations is applied to investigate the ionospheric day-to-day tidal variability during the 2009 stratospheric sudden warming (SSW) period. Including the improved daily three-dimensional global electron density distribution from GIS enables us to retrieve the daily solar tidal solution by using least squares tidal analysis. We find prominent reductions followed by enhancements in the amplitude of the solar semidiurnal migrating tide (SW2) after the peak warming, with recurrent phase variations occurring at low magnetic latitudes over a period of about 15 days. This is close to the beating period (15.13 day) between SW2 and lunar semidiurnal (M2), thus suggesting the existence of strong M2, and our results demonstrate that the intensification of M2 exists only during the SSW period. Additionally, M2 acts as the key contributor to make the semidiurnal ionospheric perturbations shift toward later local times. Our tidal analyses of daily GIS thus provide evidence for the combined impact of amplitudes and phases of the SW2 and M2 in producing semidiurnal variations in ionosphere during the 2009 SSW.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d78k7d5b

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2019-05-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2019 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T19:29:25.798629

Metadata language

eng; USA