Identification

Title

A simple parameterization of the short-wave aerosol optical properties for surface direct and diffuse irradiances assessment in a numerical weather model

Abstract

Broadband short-wave (SW) surface direct and diffuse irradiances are not typically within the set of output variables produced by numerical weather prediction (NWP) models. However, they are frequently requested for solar energy applications. In order to compute them, a detailed representation of the aerosol optical properties is important. Nonetheless, NWP models typically oversimplify aerosol representation or even neglect their effect. In this work, a flexible method to account for the SW aerosol optical properties in the computation of broadband SW surface direct and diffuse irradiances is presented. It only requires aerosol optical depth at 0.55 μm and knowledge of the type of predominant aerosol. Other parameters needed to consider spectral aerosol extinction, namely, Angström exponent, aerosol single-scattering albedo and aerosol asymmetry factor, are parameterized. The parameterization has been tested using the Rapid Radiative Transfer Model for climate and weather models (RRTMG) SW scheme of the Weather Research and Forecasting (WRF) NWP model for data over the continental US. In principle, it can be adapted to any other SW radiative transfer band model. It has been verified against a control experiment and using data from five radiometric stations in the contiguous US. The control experiment consisted of a clear-sky evaluation of the RRTMG solar radiation estimates obtained in WRF when RRTMG is driven with ground-observed aerosol optical properties. Overall, the verification has shown satisfactory results for both broadband SW surface direct and diffuse irradiances. The parameterization has proven effective in significantly reducing the prediction error and constraining the seasonal bias in clear-sky conditions to within the typical observational error expected in well maintained radiometers.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d71g0n8q

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2014-06-17T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright Author(s) 2014. This work is distributed under the Creative Commons Attribution 3.0 License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:55:58.441111

Metadata language

eng; USA