Identification

Title

Supersaturation variability from scalar mixing: Evaluation of a new Subgrid-Scale Model using direct numerical simulations of turbulent Rayleigh–Bénard convection

Abstract

Supersaturation fluctuations in the atmosphere are critical for cloud processes. A nonlinear dependence on two scalars-water vapor and temperature-leads to different behavior than single scalars in turbulent convection. For modeling such multiscalar processes at subgrid scales (SGS) in large-eddy simulations (LES) or convection-permitting models, a new SGS scheme is implemented in CM1 that solves equations for SGS water vapor and temperature fluctuations and their covariance. The SGS model is evaluated using benchmark direct-numerical simulations (DNS) of turbulent Rayleigh-Benard convection with water vapor as in the Michigan Tech Pi Cloud Chamber. This idealized setup allows thorough evaluation of the SGS model without complications from other atmospheric processes. DNS results compare favorably with measurements from the chamber. Results from LES using the new SGS model compare well with DNS, including profiles of water vapor and temperature variances, their covariance, and supersaturation variance. SGS supersaturation fluctuations scale appropriately with changes to the LES grid spacing, with the magnitude of SGS fluctuations decreasing relative to those at the resolved scale as the grid spacing is decreased. Sensitivities of covariance and supersaturation statistics to changes in water vapor flux relative to thermal flux are also investigated by modifying the sidewall conditions. Relative changes in water vapor flux substantially decrease the covariance and increase supersaturation fluctuations even away from boundaries.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d72r3wdm

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2022-04-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2022 American Meteorological Society

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:36:46.155098

Metadata language

eng; USA