A localized particle filter for high-dimensional nonlinear systems
This paper presents a new data assimilation approach based on the particle filter (PF) that has potential for nonlinear/non-Gaussian applications in geoscience. Particle filters provide a Monte Carlo approximation of a system's probability density, while making no assumptions regarding the underlying error distribution. The proposed method is similar to the PF in that particles—also referred to as ensemble members—are weighted based on the likelihood of observations in order to approximate posterior probabilities of the system state. The new approach, denoted the local PF, extends the particle weights into vector quantities to reduce the influence of distant observations on the weight calculations via a localization function. While the number of particles required for standard PFs scales exponentially with the dimension of the system, the local PF provides accurate results using relatively few particles. In sensitivity experiments performed with a 40-variable dynamical system, the local PF requires only five particles to prevent filter divergence for both dense and sparse observation networks. Comparisons of the local PF and ensemble Kalman filters (EnKFs) reveal advantages of the new method in situations resembling geophysical data assimilation applications. In particular, the new filter demonstrates substantial benefits over EnKFs when observation networks consist of densely spaced measurements that relate nonlinearly to the model state—analogous to remotely sensed data used frequently in weather analyses.
document
http://n2t.net/ark:/85065/d72n53sr
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2016-01-01T00:00:00Z
Copyright 2016 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:08:10.122347