Identification

Title

Implementation and validation of a generalized actuator disk parameterization for wind turbine simulations within the FastEddy Model

Abstract

Fast and accurate large‐eddy simulation (LES) of the atmospheric boundary layer plays a crucial role in advancing wind energy research. Long‐duration wind farm studies at turbine‐resolving scales have become increasingly important to understand the intricate interactions between large wind farms and the atmospheric boundary layer. However, the prohibitive computational cost of these turbulence‐ and turbine‐resolving simulations has precluded such modeling to be exercised on a regular basis. To that end, we implement and validate the generalized actuator disk (GAD) model in the computationally efficient, graphics processing unit (GPU)–resident, LES model FastEddy. We perform single‐turbine simulations under three atmospheric stabilities (neutral, unstable, and stable) and compare them against observations from the Scaled Wind Farm Technology (SWiFT) facility and other LES codes from the recent Wakebench turbine wake model benchmark. Our idealized LES results agree well with observed wake velocity deficit and downstream recovery across stability regimes. Turbine response in terms of rotational speed, generated power, torque, and thrust coefficient are well predicted across stability regimes and are consistent with the LES results from the benchmark. The FastEddy simulations are found to be at least two orders of magnitude more efficient than the traditional CPU‐based LES models, opening the door for realistic LES simulations of full wind plants as a viable standard practice.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.net/ark:/85065/d7b280kk

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2024-11-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

<style type="text/css"></style><span style="font-family:Arial;font-size:10pt;font-style:normal;" data-sheets-root="1">Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.</span>

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-10T19:57:44.989788

Metadata language

eng; USA