An expanded dataset of hurricane eyewall sizes and slopes
Using airborne Doppler radar data from 39 flights into hurricanes from 2004 to 2010, the authors examine the outward slope of the eyewall, revisiting the recent studies of Stern and Nolan. The slope of the radius of maximum winds (RMW) is found to increase nearly linearly with size and is uncorrelated with intensity. The slope of the eyewall absolute angular momentum surface M increases with increasing size (strong correlation) and decreases with increasing intensity (weak to moderate correlation). Two other measures of eyewall slope are also investigated: the 20-dBZ reflectivity isosurface (dBZ20) and the radius of maximum azimuthal-mean updraft (RWMAX). The slopes of both dBZ20 and RWMAX increase with their size. The slope of dBZ20 decreases with intensity, though the correlation is weak, while the slope of RWMAX is uncorrelated with intensity. The absolute angular momentum decreases on average along the RMW by 9% from 2- to 8-km heights. With this larger dataset, the previous results are generally confirmed: the slope of the eyewall is mostly a function of the size of the RMW.The vertical decay rate of the maximum tangential winds (Vmax) is also reexamined. On average, Vmax decreases by 20% from 2- to 8-km heights, but this varies from 8% to as large as 42%. This percentage decay rate increases with increasing size and decreases with increasing intensity. Three cases are found where Vmax increases with height from 2 to 4 km, which is likely a consequence of unbalanced flow.
document
http://n2t.net/ark:/85065/d7qr4z3p
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2014-07-01T00:00:00Z
Copyright 2014 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T19:07:31.222359