Testing competing precipitation forecasts accurately and efficiently: The spatial prediction comparison test
Which model is best? Many challenges exist when testing competing forecast models, especially for those with high spatial resolution. Spatial correlation, double penalties, and small-scale errors are just a few such challenges. Many new methods have been developed in recent decades to tackle these issues. The spatial prediction comparison test (SPCT), which was developed for general spatial fields and applied to wind speed, is applied here to precipitation fields; which pose many unique challenges in that they are not normally distributed, are marked by numerous zero-valued grid points, and verification results are particularly sensitive to small-scale errors and double penalties. The SPCT yields a statistical test that solves one important issue for verifying forecasts spatially by accounting for spatial correlation. Important for precipitation forecasts is that the test requires no distributional assumptions, is easy to perform, and can be applied efficiently to either gridded or nongridded spatial fields. The test compares loss functions between two competing forecasts, where any such function can be used, but most still suffer from the limitations of traditional gridpoint-by-gridpoint assessment techniques. Therefore, two new loss functions to the SPCT are introduced here that address these concerns. The first is based on distance maps and the second on image warping. Results are consistent with other spatial assessment methods, but provide a relatively straightforward mechanism for comparing forecasts with a statistically powerful test. The SPCT combined with these loss functions provides a new mechanism for appropriately testing which of two competing precipitation models is best, and whether the result is statistically significant or not.
document
http://n2t.net/ark:/85065/d7w66mj5
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2013-01-01T00:00:00Z
Copyright 2013 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:48:51.383340