Solar prominences: Theory and models
Magnetic fields suspend the relatively cool material of solar prominences in an otherwise hot corona. A comprehensive understanding of solar prominences ultimately requires complex and dynamic models, constrained and validated by observations spanning the solar atmosphere. We obtain the core of this understanding from observations that give us information about the structure of the magnetic skeleton that supports and surrounds the prominence. Energetically-sophisticated magnetohydrodynamic simulations then add flesh and blood to the skeleton, demonstrating how a thermally varying plasma may pulse through to form the prominence, and how the plasma and magnetic fields dynamically interact.
document
http://n2t.net/ark:/85065/d7p55rfw
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2018-12-22T00:00:00Z
Copyright 2018 Author. This work is licensed under a Creative Commons Attribution 4.0 International license.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T19:21:04.276565