Identification

Title

WACCM6 projections of polar mesospheric cloud abundance over the 21st century

Abstract

Polar mesospheric clouds (PMC), or noctilucent clouds, can be observed over high latitudes with the naked eye from the ground or from space near the summer solstice. PMC are considered a direct and sensitive indicator of climate change and have been reported to appear more frequently in recent decades. How PMC will change in the future under the influence of natural variability and anthropogenic forcing is uncertain. In this study, we utilize model output from the Whole Atmosphere Community Climate Model under several shared socioeconomic pathway (SSP) scenarios and input the water vapor, temperature, and pressure information into a 0-d PMC model to project the trend and variation of PMC over the 21st century, and their relationship to future changes of temperature, water vapor, and the solar cycle. The 0-d model calculations indicate that PMC ice water content (IWC) will increase and PMC will extend to lower latitudes under high SSP scenarios. Under these scenarios, more mesospheric water vapor leads to an increased IWC of PMC over the polar region, and colder mesopause temperature leads to more PMC over the mid-latitudes. There is a significant anti-correlation between the solar cycle and PMC IWC over the 21st century, but the anti-correlation is not always significant on the decadal scale. Finally, methane oxidation in the stratosphere and water vapor entering from the troposphere are both responsible for future changes in mesospheric water vapor and thus PMC.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7kk9gvp

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2023-08-16T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T15:15:27.931163

Metadata language

eng; USA