Identification

Title

A comparative study of ionospheric day‐to‐day variability over Wuhan based on ionosonde measurements and model simulations

Abstract

Ionospheric day-to-day variability is essential for understanding the space environment, while it is still challenging to properly quantify and forecast. In the present work, the day-to-day variability of F2 layer peak electron densities (NmF2) is examined from both observational and modeling perspectives. Ionosonde data over Wuhan station (30.5 degrees N, 114.5 degrees E; 19.3 degrees N magnetic latitude) are compared with simulations from the specific dynamics Whole Atmosphere Community Climate Model with thermosphere and ionosphere eXtension (SD-WACCM-X) and the Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIEGCM) in 2009 and 2012. Both SD-WACCM-X and TIEGCM are driven by the realistic 3 h geomagnetic index and daily solar input, and the former includes self-consistently solved physics and chemistry in the lower atmosphere. The correlation coefficient between observations and SD-WACCM-X simulations is much larger than that of the TIEGCM simulations, especially during dusk in 2009 and nighttime in 2012. Both the observed and SD-WACCM-X simulated day-to-day variability of NmF2 reveal a similar day-night dependence in 2012 that increases large during the nighttime and decreases during the daytime, and shows favorable consistency of daytime variability in 2009. Both the observations and SD-WACCM-X simulations also display semiannual variations in nighttime NmF2 variability, although the month with maximum variability is slightly different. However, TIEGCM does not reproduce the day-night dependence or the semiannual variations well. The results emphasize the necessity for realistic lower atmospheric perturbations to characterize ionospheric day-to-day variability. This work also provides a validation of the SD-WACCM-X in terms of ionospheric day-to-day variability.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7h998mp

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2021-03-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2021 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:15:00.934040

Metadata language

eng; USA