Additive noise for storm-scale ensemble data assimilation
An "additive noise" method for initializing ensemble forecasts of convective storms and maintaining ensemble spread during data assimilation is developed and tested for a simplified numerical cloud model (no radiation, terrain, or surface fluxes) and radar observations of the 8 May 2003 Oklahoma City supercell. Every 5 min during a 90-min data-assimilation window, local perturbations in the wind, temperature, and water-vapor fields are added to each ensemble member where the reflectivity observations indicate precipitation. These perturbations are random but have been smoothed so that they have correlation length scales of a few kilometers. An ensemble Kalman filter technique is used to assimilate Doppler velocity observations into the cloud model. The supercell and other nearby cells that develop in the model are qualitatively similar to those that were observed. Relative to previous storm-scale ensemble methods, the additive-noise technique reduces the number of spurious cells and their negative consequences during the data assimilation. The additive-noise method is designed to maintain ensemble spread within convective storms during long periods of data assimilation, and it adapts to changing storm configurations. It would be straightforward to use this method in a mesoscale model with explicit convection and inhomogeneous storm environments.
document
http://n2t.net/ark:/85065/d7cr5vc9
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2009-05-01T00:00:00Z
Copyright 2009 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:22:35.455010