Identification

Title

Full implementation of matrix approach to biogeochemistry module of CLM5

Abstract

Earth system models (ESMs) have been rapidly developed in recent decades to advance our understanding of climate change-carbon cycle feedback. However, those models are massive in coding, require expensive computational resources, and have difficulty in diagnosing their performance. It is highly desirable to develop ESMs with modularity and effective diagnostics. Toward these goals, we implemented a matrix approach to the Community Land Model version 5 (CLM5) to represent carbon and nitrogen cycles. Specifically, we reorganized 18 balance equations each for carbon and nitrogen cycles among the 18 vegetation pools in the original CLM5 into two matrix equations. Similarly, 140 balance equations each for carbon and nitrogen cycles among the 140 soil pools were reorganized into two additional matrix equations. The vegetation carbon and nitrogen matrix equations are connected to soil matrix equations via litterfall. The matrix equations fully reproduce simulations of carbon and nitrogen dynamics by the original model. The computational cost for forwarding simulation of the CLM5 matrix model was 26% more expensive than the original model, largely due to calculation of additional diagnostic variables, but the spin-up computational cost was significantly saved. We showed a case study on modeled soil carbon storage under two forcing data sets to illustrate the diagnostic capability that the matrix approach uniquely offers to understand simulation results of global carbon and nitrogen dynamics. The successful implementation of the matrix approach to CLM5, one of the most complex land models, demonstrates that most, if not all, the biogeochemical models can be reorganized into the matrix form to gain high modularity, effective diagnostics, and accelerated spin-up.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d71g0qkk

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2020-11-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T19:13:46.443360

Metadata language

eng; USA