Identification

Title

Monitoring air quality from space: The case for the geostationary platform

Abstract

Air quality (AQ) is defined by the atmospheric composition of gases and particulates near the Earth's surface. This composition depends on local emissions of pollutants, chemistry, and transport processes; it is highly variable in space and time. Key lower-tropospheric pollutants include ozone, aerosols, and the ozone precursors NOx and volatile organic compounds. Information on the transport of pollutants is provided by carbon monoxide measurements. Air quality impacts human society, because high concentrations of pollutants can have adverse effects on human health; health costs attributable to AQ are high. The ability to monitor, forecast, and manage AQ is thus crucial for human society. In this paper we identify the observational requirements needed to undertake this task, discuss the advantages of the geostationary platform for monitoring AQ from space, and indicate important challenges to overcome. We present planned geostationary missions to monitor AQ in Europe, the United States, and Asia, and advocate for the usefulness of such a constellation in addition to the current global observing system of tropospheric composition.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d78s4qmt

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2012-02-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2012 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:59:33.857279

Metadata language

eng; USA