Identification

Title

On the anomalous counterclockwise turning of the surface wind with time in the plains of the United States

Abstract

Vertical shear in the boundary layer affects the mode of convective storms that can exist if they are triggered. In western portions of the southern Great Plains of the United States, vertical shear, in the absence of any transient features, changes diurnally in a systematic way, thus leading to a preferred time of day for the more intense modes of convection when the shear, particularly at low levels, is greatest. In this study, yearly and seasonally averaged wind observations for each time of day are used to document the diurnal variations in wind at the surface and in the boundary layer, with synoptic and mesoscale features effectively filtered out. Data from surface mesonets in Oklahoma and Texas, Doppler wind profilers, instrumented tower data, and seasonally averaged wind data for each time of day from convection-allowing numerical model forecasts are used. It is shown through analysis of observations and model data that the perturbation wind above anemometer level turns in a clockwise manner with time, in a manner consistent with prior studies, yet the perturbation wind at anemometer level turns in an anomalous, counterclockwise manner with time. Evidence is presented based on diagnosis of the model forecasts that the dynamics during the early evening boundary layer transition are, in large part, responsible for the behavior of the hodographs at that time: as vertical mixing in the boundary layer diminishes, the drag on the wind at anemometer level persists, leading to rapid deceleration of the meridional component of the wind. This deceleration acts to turn the wind to the left rather than to the right, as would be expected from the Coriolis force alone.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7qj7m1q

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2018-02-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2018 American Meteorological Society (AMS).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:18:40.078291

Metadata language

eng; USA