Isohaline salinity budget of the North Atlantic salinity maximum
In this study, the salinity budget of the North Atlantic subtropical salinity maximum region for control volumes bounded by isohaline surfaces is analyzed. The authors provide closed budgets based on output from a high-resolution numerical simulation and partial budgets based on analyses of observational climatologies of hydrography and surface fluxes. With this choice of control volume, advection is eliminated from the instantaneous volume-integrated salt budget, and time-mean advection is eliminated from the budget evaluated from time-averaged data. In this way, the role of irreversible mixing processes in the maintenance and variability of the salinity maximum are more readily revealed. By carrying out the analysis with both near-instantaneous and time-averaged model output, the role of mesoscale eddies in stirring and mixing for this water mass is determined. This study finds that the small-scale mixing acting on enhanced gradients generated by the mesoscale eddies is approximately equal to that acting on the large-scale gradients estimated from climatological-mean conditions. The isohaline salinity budget can be related to water mass transformation rates associated with surface forcing and mixing processes in a straightforward manner. The authors find that the surface net evaporation in the North Atlantic salinity maximum region accounts for a transformation of 7 Sverdrups (Sv; 1 Sv ≡ 10⁶ m³ s⁻¹) of water across the 37-psu isohaline outcrop into the salinity maximum in the simulation, whereas the estimate based on climatological observations is 9 to 10 Sv.
document
http://n2t.net/ark:/85065/d7d79ckv
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2015-03-01T00:00:00Z
Copyright 2015 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:43:56.682438