Identification

Title

The role of convective gustiness in reducing seasonal precipitation biases in the Tropical West Pacific

Abstract

Precipitation is an important climate quantity that is critically relevant to society. In spite of intense efforts, significant precipitation biases remain in most climate models. One pervasive and persistent bias found in many general circulation models occurs in the Tropical West Pacific where northern hemisphere summer-time precipitation is often underestimated compared to observations. Using the DOE-E3SM model, the inclusion of a missing process, convective gustiness, is shown to reduce those biases through a net increase in surface evaporation. Gustiness in surface wind fields is assumed to arise empirically in proportion to the intensity of convective precipitation. The increased evaporation can be treated as an increase in the moist static energy forcing into the atmosphere. A Normalized Gross Moist Stability (NGMS) framework (which characterizes the relationship between convective forcing and convective response) is used to explore the processes responsible for the precipitation bias, and the impact of the gustiness parameterization in reducing that bias. Because the NGMS of the Tropical West Pacific is less than unity in the E3SMv1 model, the increase in energy forcing amplifies the increase in precipitation to exceed that of the evaporative flux. Convective gustiness favors increased precipitation in regions where the resolved surface winds are weak and convection is present.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d78d0016

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2018-04-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2018 Author(s). This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International license.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T19:39:54.590474

Metadata language

eng; USA