Identification

Title

Understanding the behaviors of thermospheric nitric oxide cooling during the 15 May 2005 geomagnetic storm

Abstract

The behaviors of thermospheric nitric oxide (NO) cooling during the 15 May 2005 intense geomagnetic storm are studied using measurements by the Sounding of the Atmosphere using Broadband Emission Radiometry instrument on board the Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics satellite and simulations by the Thermosphere-Ionosphere-Electrodynamics General Circulation Model. The geomagnetic storm was the most intense (Dst = -247 nT) of 2005 with a short and rapid main phase and long-lasting recovery (more than 3 days). NO cooling responded globally to the geomagnetic storm within 2 hr after the onset of storm main phase. The most significant NO cooling increases occurred at middle and low latitudes in the Northern Hemisphere and at middle latitudes in the Southern Hemisphere. The model outputs agree with observations in general but overestimate the NO cooling at high latitudes and underestimate the NO cooling elsewhere. Furthermore, observations show a significant upward shifting of the NO cooling peak altitude in the storm main phase and a significant downward shifting of the NO cooling peak altitude during the storm recovery phase at low latitudes. An unusual double-peak structure in the NO cooling rate appeared during storm main phase and recovery phase. By investigating the NO cooling vertical profiles, we suggest that the horizontal equatorward transport plays an important role in inducing these significant variations of the NO cooling peak altitude.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7wq06wk

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2019-03-18T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2019 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:12:00.494310

Metadata language

eng; USA